Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Insects ; 15(2)2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38392527

ABSTRACT

Pyrethroid-treated long-lasting insecticidal nets (LLINs) have been the main contributor to the reduction in malaria in the past two decades in sub-Saharan Africa. The development of pyrethroid insecticide resistance threatens the future of LLINs, especially when nets become holed and pyrethroid decays. In this study, three new classes of dual-active ingredient (AI) LLINs were evaluated for their physical durability: (1) Royal Guard, combining pyriproxyfen, which disrupts female fertility, and a pyrethroid, alpha-cypermethrin; (2) Interceptor G2, which combines the pyrrole chlorfenapyr and a pyrethroid (alpha-cypermethrin); (3) Olyset Plus, which incorporates the pyrethroid permethrin and the synergist piperonyl butoxide, to enhance the pyrethroid potency; and Interceptor, a reference net that contains alpha-cypermethrin as the sole active ingredient. About 40,000 nets of each type were distributed in February 2019 to different villages in Misungwi. A total of 3072 LLINs were followed up every 6-12 months up to 36 months to assess survivorship and fabric integrity. The median functional survival was less than three years with Interceptor, Interceptor G2, and Royal Guard showing 1.9 years each and Olyset Plus showing 0.9 years. After 36 months, 90% of Olyset Plus and Royal Guard and 87% of Interceptor G2 were no longer in use (discarded) due to wear and tear, compared to 79% for Interceptor. All dual-AI LLINs exhibited poor textile durability, with Olyset Plus being the worst.

2.
Lancet Infect Dis ; 24(1): 87-97, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37776879

ABSTRACT

BACKGROUND: New classes of long-lasting insecticidal nets (LLINs) containing two active ingredients have been recently recommended by WHO in areas where malaria vectors are resistant to pyrethroids. This policy was based on evidence generated by the first 2 years of our recently published trial in Tanzania. In this Article, we report the final third-year trial findings, which are necessary for assessing the long-term effectiveness of new classes of LLIN in the community and the replacement intervals required. METHODS: A third year of follow-up of a four-arm, single-blind, cluster-randomised controlled trial of dual active ingredient LLINs was conducted between July 14, 2021, and Feb 10, 2022, in Misungwi, Tanzania. Restricted randomisation was used to assign 84 clusters to the four LLIN groups (1:1:1:1) to receive either standard pyrethroid (PY) LLINs (reference), chlorfenapyr-PY LLINs, pyriproxyfen-PY LLINs, or piperonyl butoxide (PBO)-PY LLINs. All households received one LLIN for every two people. Data collection was done in consenting households in the cluster core area with at least one child between 6 months and 15 years of age who permanently resided in the selected household. Exclusion criteria were householders absent during the visit, living in the cluster buffer area, no adult caregiver capable of giving informed consent, or eligible children who were severely ill. Field staff and study participants were masked to allocation, and those analysing data were not. The primary 24-month endpoint was reported previously; here, we present the secondary outcome, malaria infection prevalence in children at 36 months post LLIN distribution, reported in the intention-to-treat analysis. The trial was registered with ClinicalTrials.gov (NCT03554616) and is now complete. FINDINGS: Overall usage of study nets was 1023 (22·3%) of 4587 people at 36 months post distribution. In the standard PY LLIN group, malaria infection was prevalent in 407 (37·4%) of 1088 participants, compared with 261 (22·8%) of 1145 in the chlorfenapyr-PY LLIN group (odds ratio 0·57, 95% CI 0·38-0·86; p=0·0069), 338 (32·2%) of 1048 in the PBO-PY LLIN group (0·95, 0·64-1·42; p=0·80), and 302 (28·8%) of 1050 in the pyriproxyfen-PY LLIN group (0·82, 0·55-1·23; p=0·34). None of the participants or caregivers reported side-effects. INTERPRETATION: Despite low coverage, the protective efficacy against malaria offered by chlorfenapyr-PY LLINs was superior to that provided by standard PY LLINs over a 3-year LLIN lifespan. Appropriate LLIN replacement strategies to maintain adequate usage of nets will be necessary to maximise the full potential of these nets. FUNDING: Department for International Development, UK Medical Research Council, Wellcome Trust, Department of Health and Social Care, and Bill & Melinda Gates Foundation via the Innovative Vector Control Consortium.


Subject(s)
Insecticide-Treated Bednets , Insecticides , Malaria , Pyrethrins , Child , Humans , Insecticides/pharmacology , Piperonyl Butoxide , Tanzania/epidemiology , Single-Blind Method , Insecticide Resistance , Malaria/epidemiology , Malaria/prevention & control , Mosquito Control/methods
3.
Malar J ; 22(1): 372, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38062464

ABSTRACT

BACKGROUND: The use of primaquine for mass drug administration (MDA) is being considered as a key strategy for malaria elimination. In addition to being the only drug active against the dormant and relapsing forms of Plasmodium vivax, primaquine is the sole potent drug against mature/infectious Plasmodium falciparum gametocytes. It may prevent onward transmission and help contain the spread of artemisinin resistance. However, higher dose of primaquine is associated with the risk of acute haemolytic anaemia in individuals with a deficiency in glucose-6-phosphate dehydrogenase. In many P. falciparum endemic areas there is paucity of information about the distribution of individuals at risk of primaquine-induced haemolysis at higher dose 45 mg of primaquine. METHODS: A retrospective cross-sectional study was carried out using archived samples to establish the prevalence of G6PD deficiency in a malaria hotspot area in Misungwi district, located in Mwanza region, Tanzania. Blood samples collected from individuals recruited between August and November 2010 were genotyped for G6PD deficiency and submicroscopic parasites carriage using polymerase chain reaction. RESULTS: A total of 263 individuals aged between 0 and 87 were recruited. The overall prevalence of the X-linked G6PD A- mutation was 83.7% (220/263) wild type, 8% (21/263) heterozygous and 8.4% (22/263) homozygous or hemizygous. Although, assessment of the enzymatic activity to assign the phenotypes according to severity and clinical manifestation as per WHO was not carried out, the overall genotype and allele frequency for the G6PD deficiency was 16.4% and 13. 2%, respectively. There was no statistically significant difference in among the different G6PD genotypes (p > 0.05). Out of 248 samples analysed for submicroscopic parasites carriage, 58.1% (144/248) were P. falciparum positive by PCR. G6PD heterozygous deficiency were associated with carriage of submicroscopic P. falciparum (p = 0.029). CONCLUSIONS: This study showed that 16.4% of the population in this part of North-western Tanzania carry the G6PD A- mutation, within the range of 15-32% seen in other parts of Africa. G6PD gene mutation is widespread and heterogeneous across the study area where primaquine would be valuable for malaria control and elimination. The maps and population estimates presented here reflect potential risk of higher dose of primaquine being associated with the risk of acute haemolytic anaemia (AHA) in individuals with a deficiency in glucose-6-phosphate dehydrogenase and call further research on mapping of G6PD deficiency in Tanzania. Therefore, screening and education programmes for G6PD deficiency is warranted in a programme of malaria elimination using a higher primaquine dose.


Subject(s)
Antimalarials , Glucosephosphate Dehydrogenase Deficiency , Malaria, Falciparum , Malaria, Vivax , Malaria , Parasites , Humans , Animals , Infant, Newborn , Infant , Child, Preschool , Child , Adolescent , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Primaquine/adverse effects , Glucosephosphate Dehydrogenase Deficiency/epidemiology , Glucosephosphate Dehydrogenase Deficiency/genetics , Glucosephosphate Dehydrogenase Deficiency/diagnosis , Antimalarials/therapeutic use , Glucosephosphate Dehydrogenase/genetics , Tanzania/epidemiology , Prevalence , Cross-Sectional Studies , Retrospective Studies , Malaria/drug therapy , Malaria, Falciparum/prevention & control , Hemolysis , Malaria, Vivax/epidemiology , Malaria, Vivax/drug therapy
4.
PLoS One ; 18(12): e0295800, 2023.
Article in English | MEDLINE | ID: mdl-38127909

ABSTRACT

BACKGROUND: After a decade of successful control, malaria is on the rise again. The prevalence of malaria in Tanzania has increased from 7% in 2017 to 8% in 2022 and reached 18% in Kagera region in the North West of Tanzania. Malaria vectors in Muleba district Kagera have high level of pyrethroid resistance. The aim of this paper is to explore factors associated with malaria infection prevalence in children aged 6 months to 14 years in Muleba, where Long Lasting Insecticidal Net (LLIN) combining a pyrethroid insecticide and synergist piperonyl butoxide (PBO) that counteract resistance in the mosquitoes, was first distributed under trial conditions in 2015. METHODS: The trial was a community randomized control in which there were two malaria prevalence cross-sectional household surveys each year (June and December) from 2015 to 2017 in Muleba. In this study we conducted a secondary data analysis of the December surveys only. Multilevel Poisson regression analysis was used to assess factors associated with malaria infection. RESULTS: A total of 10,941 children and 4,611 households were included in this study. Overall malaria prevalence was 35.8%, 53.3% and 54.4% in the year 2015, 2016 and 2017 respectively. Living in an area with standard LLIN as opposed to the novel PBO synergist LLIN, being a male child, above 5 years of age, living in a house with open eaves, living in house without IRS, having head of household with no formal education, lower socioeconomic status and survey year were associated with increased risk of malaria infection. CONCLUSIONS: Using PBO LLIN reduced the risk of malaria infection. However, additional measures could further reduce malaria infection in areas of insecticide resistance such as housing improvement.


Subject(s)
Insecticide-Treated Bednets , Insecticides , Malaria , Pyrethrins , Child , Animals , Humans , Male , Pyrethrins/pharmacology , Tanzania/epidemiology , Cross-Sectional Studies , Mosquito Control , Insecticides/pharmacology , Malaria/epidemiology , Malaria/prevention & control , Insecticide Resistance , Mosquito Vectors
5.
PLOS Glob Public Health ; 3(11): e0002468, 2023.
Article in English | MEDLINE | ID: mdl-37992045

ABSTRACT

Malaria and schistosomiasis are two major parasitic vector-borne diseases that are a particular threat to young children in Sub-Saharan Africa. In the present study, we investigated factors that are associated with malaria, schistosomiasis, and co-infection among school-aged children, using an explanatory sequential mixed-methods approach. A cross-sectional study was conducted in January 2022 in Misungwi, Tanzania, that sampled 1,122 children aged 5 to 14 years old for malaria and schistosomiasis infection. Mixed-effect logistic regression models were used to assess the association between infection prevalence or seroprevalence, and environmental determinants that create favorable conditions for vectors and parasites and social determinants that relate to disease exposure. Community mapping combined with direct field observations were conducted in August 2022 in three selected villages from the cross-sectional study to understand specific water use behaviors and to identify potential malaria mosquito larval breeding sites and freshwater snail habitat. The prevalence of malaria, seroprevalence of schistosomiasis, and co-infection in this study were 40.4%, 94.3%, and 38.1%, respectively. Individual-level factors emerged as the primary determinants driving the association with infection, with age (every one-year increase in age) and sex (boys vs girls) being statistically and positively associated with malaria, schistosomiasis, and co-infection (P<0.05 for all). Community maps identified many unimproved water sources in all three villages that were used by humans, cattle, or both. We found that children primarily fetched water, and that unprotected wells were dedicated for drinking water whereas ponds were dedicated for other domestic uses and cattle. Although not identified in the community maps, we found hand pumps in all three villages were not in use because of unpleasant taste and high cost. This study improves our understanding of individual, social and environmental factors that are associated with malaria, schistosomiasis, and co-infection, which can inform potential entry points for integrated disease prevention and control.

6.
Malar J ; 22(1): 294, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37789389

ABSTRACT

BACKGROUND: After decades of success in reducing malaria through the scale-up of pyrethroid long-lasting insecticidal nets (LLINs), the decline in the malaria burden has stalled, coinciding with the rapid spread of pyrethroid resistance. In a previously reported study, nets treated with a pyrethroid and a synergist, piperonyl butoxide (PBO), demonstrated superior efficacy compared to standard pyrethroid LLINs (std-LLINs) against malaria. Evidence was used to support the public health recommendation of PBO-Pyrethroid-LLIN by the World Health Organization in 2018. This study looks at the third year of rollout of these nets in Muleba district, Tanzania to inform whether policy guidelines need to be updated. METHODS: A four-group cluster randomized trial (CRT) using a two-by-two factorial design was carried out between January 2014 and December 2017. A total of 48 clusters, were randomized in a 1:1:1:1 ratio to the following treatment groups, each intervention being provided once in 2015: 1/std-LLIN; 2/PBO-pyrethroid LLIN; 3/std-LLIN + Indoor Residual Spraying (IRS) and 4/PBO-Pyrethroid-LLIN + IRS. During the third year follow-up, malaria infection prevalence in 80 children per cluster, aged 6 months to 14 years, was measured at 28- and 33-months post-intervention and analysed as intention-to-treat (ITT) and per protocol (PP). Mosquito collections were performed monthly in all clusters, using CDC light traps in 7 randomly selected houses per cluster. RESULTS: At 28 and 33 months, study net usage among household participants was only 47% and 31%, respectively. In ITT analysis, after 28 months malaria infection prevalence among 7471 children was 80.9% in the two std-LLIN groups compared to 69.3% in the two PBO-Pyrethroid-LLIN (Odds Ratio: 0.45, 95% Confidence Interval: 0.21-0.95, p-value: 0.0364). After 33 months the effect was weaker in the ITT analysis (prevalence 59.6% versus 49.9%, OR: 0.60, 95%CI:0.32-1.13, p-value: 0.1131) but still evident in the PP analysis (57.2% versus 44.2%, OR: 0.34, 95%CI: 0.16-0.71, p-value: 0.0051). Mean number of Anopheles per night collected per house was similar between PBO-Pyrethroid-LLIN groups (5.48) and std-LLIN groups (5.24) during the third year. CONCLUSIONS: Despite low usage of PBO- Pyrethroid LLIN, a small impact of those nets on malaria infection prevalence was still observed in the 3rd year with the most protection offered to children still using them. To maximize impact, it is essential that net re-distribution cycles are aligned with this LLIN lifespan to maintain maximum coverage. TRIAL REGISTRATION: The trial was registered with ClinicalTrials.gov (registration number NCT02288637).


Subject(s)
Anopheles , Insecticide-Treated Bednets , Insecticides , Malaria , Mosquito Control , Animals , Child , Humans , Insecticide Resistance , Malaria/epidemiology , Malaria/prevention & control , Mosquito Control/methods , Piperonyl Butoxide/pharmacology , Pyrethrins/pharmacology , Tanzania/epidemiology , Infant , Child, Preschool , Adolescent
7.
Lancet Planet Health ; 7(8): e673-e683, 2023 08.
Article in English | MEDLINE | ID: mdl-37558348

ABSTRACT

BACKGROUND: Insecticide resistance among malaria-vector species is a pervasive problem that might jeopardise global disease-control efforts. Novel vector-control tools with different modes of action, including long-lasting insecticidal nets (LLINs) incorporating new active ingredients, are urgently needed to delay the evolution and spread of insecticide resistance. We aimed to measure phenotypic and genotypic insecticide-resistance profiles among wild Anopheles collected over 3 years to assess the longitudinal effects of dual-active-ingredient LLINs on insecticide resistance. METHODS: For this analysis, data nested in a 3-year, four parallel-arm, superiority cluster-randomised controlled trial (cRCT) in Tanzania, collected from 84 clusters (39 307 households) formed of 72 villages in the Misungwi district, were used to measure insecticide-resistance profiles among female Anopheles mosquitoes via insecticide-resistance bioassays and quantitative RT-PCR of metabolic-resistance genes. Wild, blood-fed, indoor-resting mosquitoes were collected annually during the rainy seasons from house walls in clusters from all four trial groups. Mosquitoes were morphologically identified as An gambiae sensu lato (SL) or An funestus SL before separate bioassay testing. The primary outcomes were lethal-dose values for α-cypermethrin, permethrin, and piperonyl butoxide pre-exposure plus permethrin-resistance intensity bioassays, mortality 72 h after insecticidal exposure for chlorfenapyr bioassays, fertility reduction 72 h after insecticidal exposure for pyriproxyfen bioassays, and fold change in metabolic-enzyme expression relative to an insecticide-susceptible laboratory strain. All primary outcomes were measured in An funestus SL 1 year, 2 years, and 3 years after LLIN distribution. Primary outcomes were also assessed in An gambiae SL if enough mosquitoes were collected. The cRCT is registered with ClinicalTrials.gov (NCT03554616). FINDINGS: Between May 24, 2019, and Oct 25, 2021, 47 224 female Anopheles were collected for resistance monitoring. In the pyrethroid (PY)-LLIN group, there were significant increases in α-cypermethrin-resistance intensity (year 1 LD50=9·52 vs year 2 76·20, p<0·0001) and permethrin-resistance intensity (year 1 13·27 vs year 2 35·83, p=0·0019) in An funestus SL. In the pyriproxyfen PY-LLIN group, there was similar increase in α-cypermethrin-resistance intensity (year 1 0·71 vs year 2 81·56, p<0·0001) and permethrin-resistance intensity (year 1 5·68 vs year 2 50·14, p<0·0001). In the piperonyl butoxide PY-LLIN group, α-cypermethrin-resistance intensity (year 1 33·26 vs year 3 70·22, p=0·0071) and permethrin-resistance intensity (year 1 47·09 vs year 3 2635·29, p<0·0001) also increased over time. In the chlorfenapyr PY-LLIN group, there were no effects on α-cypermethrin-resistance intensity (year 1 0·42 vs year 3 0·99, p=0·54) or permethrin-resistance intensity (data were not estimable due to nearly 100% mortality). There were also minimal reductions in chlorfenapyr susceptibility. However, in the chlorfenapyr PY-LLIN group, a significant decline in piperonyl-butoxide synergy was seen by year 3 (year 1 0·02 vs year 3 0·26, p=0·020). Highly over-expressed detoxification enzymes showed dynamic patterns of selection throughout the trial. INTERPRETATION: Our phenotypic data supports trial epidemiological findings; chlorfenapyr PY-LLINs provided superior protection from malaria across multiple transmission seasons, with few effects on insecticide-resistance selection. Rapid pyrethroid-resistance intensification in the piperonyl butoxide PY-LLIN group and pre-existing tolerance of pyriproxyfen in vector populations might explain the poorer performance of these two interventions regarding malaria outcomes. Further work is required to elucidate the potential mechanisms driving cross-resistance between pyrethroids and novel active ingredients to better inform the design of pre-emptive resistance-management strategies. FUNDING: UK Department for International Development; UK Medical Research Council; Wellcome Trust; UK Department of Health and Social Care; UK Foreign, Commonwealth and Development Office; and The Bill and Melinda Gates Foundation via the Innovative Vector Control Consortium.


Subject(s)
Anopheles , Insecticide-Treated Bednets , Insecticides , Malaria , Pyrethrins , Animals , Female , Humans , Insecticides/pharmacology , Insecticide Resistance/genetics , Anopheles/genetics , Permethrin/pharmacology , Piperonyl Butoxide/pharmacology , Tanzania , Malaria/prevention & control , Mosquito Vectors , Pyrethrins/pharmacology
8.
Lancet Planet Health ; 7(5): e370-e380, 2023 05.
Article in English | MEDLINE | ID: mdl-37164513

ABSTRACT

BACKGROUND: Gains in malaria control are threatened by widespread pyrethroid resistance in malaria vectors across sub-Saharan Africa. New long-lasting insecticidal nets (LLINs) containing two active ingredients (dual active-ingredient LLINs) have been developed to interrupt transmission in areas of pyrethroid resistance. We aimed to evaluate the effectiveness of three dual active-ingredient LLINs compared with standard pyrethroid LLINs against pyrethroid-resistant malaria vectors in rural Tanzania. METHODS: In this study, we did a secondary analysis of entomological data from a four-group, 3 year, single-blind, cluster-randomised controlled trial carried out between Feb 18, 2019, and Dec 6, 2021. We conducted quarterly indoor mosquito collections using the Centers for Disease Control and Prevention light trap, in eight houses in each of the 84 study clusters in the Misungwi district, northwestern Tanzania. Anopheles vectors were then tested for malaria parasites and identified at species level, to distinguish between sibling species of the Anopheles gambiae and Anopheles funestus groups, using molecular laboratory techniques. The primary outcomes were density of different malaria vector species measured as the number of female Anopheles collected per household per night, the entomological inoculation rate (EIR), an indicator of malaria transmission, and sporozoite rate. Entomological outcomes were assessed on the basis of intention to treat, and the effect of the three dual active-ingredient LLINs was compared with the standard pyrethroid LLINs at household level. FINDINGS: Dual active-ingredient LLINs had the greatest effect on Anopheles funestus sl, the most efficient vector in the study area, with comparatively weak effect on An arabiensis. An funestus density was 3∙1 per house per night in the pyrethroid LLIN group, 1∙2 in the chlorfenapyr pyrethroid LLIN group (adjusted density ratio [aDR]=0∙26, 95% CI 0∙17-0∙14, p<0∙0001), 1∙4 in the piperonyl-butoxide pyrethroid LLIN group (aDR=0∙49, 0∙32-0∙76, p=0∙0012), and 3∙0 in the pyriproxyfen pyrethroid LLIN group (aDR=0∙72, 0∙47-1∙11, p=0∙15). Malaria transmission intensity was also significantly lower in the chlorfenapyr pyrethroid group, with 0∙01 versus 0∙06 infective bites per household per night in the pyrethroid LLIN group (aDR=0∙21, 0∙14-0∙33, p<0∙0001). Ecological niche models indicated that vector-species distribution was stable following LLIN intervention despite the reductions observed in An funestus sl density. INTERPRETATION: Chlorfenapyr pyrethroid LLINs were the most effective intervention against the main malaria vector An funestus sl over 3 years of community use, whereas the effect of piperonyl-butoxide pyrethroid LLIN was sustained for 2 years. The other vector, An arabiensis, was not controlled by any of the dual active-ingredient LLINs. Additional vector control tools and strategies targeted to locally prevalent vector species evading dual active-ingredient LLINs should be deployed to further reduce malaria transmission and achieve elimination. FUNDING: The Department for International Development, UK Medical Research Council, Wellcome Trust, the Department of Health and Social Care, and The Bill & Melinda Gates Foundation via the Innovative Vector Control Consortium.


Subject(s)
Anopheles , Insecticide-Treated Bednets , Insecticides , Malaria , Pyrethrins , United States , Animals , Female , Humans , Malaria/prevention & control , Tanzania , Single-Blind Method , Mosquito Control/methods , Mosquito Vectors , Pyrethrins/pharmacology , Piperonyl Butoxide/pharmacology
9.
Lancet ; 401(10381): 1020-1036, 2023 03 25.
Article in English | MEDLINE | ID: mdl-36913959

ABSTRACT

BACKGROUND: Intermittent preventive treatment in pregnancy (IPTp) with dihydroartemisinin-piperaquine is more effective than IPTp with sulfadoxine-pyrimethamine at reducing malaria infection during pregnancy in areas with high-grade resistance to sulfadoxine-pyrimethamine by Plasmodium falciparum in east Africa. We aimed to assess whether IPTp with dihydroartemisinin-piperaquine, alone or combined with azithromycin, can reduce adverse pregnancy outcomes compared with IPTp with sulfadoxine-pyrimethamine. METHODS: We did an individually randomised, double-blind, three-arm, partly placebo-controlled trial in areas of high sulfadoxine-pyrimethamine resistance in Kenya, Malawi, and Tanzania. HIV-negative women with a viable singleton pregnancy were randomly assigned (1:1:1) by computer-generated block randomisation, stratified by site and gravidity, to receive monthly IPTp with sulfadoxine-pyrimethamine (500 mg of sulfadoxine and 25 mg of pyrimethamine for 1 day), monthly IPTp with dihydroartemisinin-piperaquine (dosed by weight; three to five tablets containing 40 mg of dihydroartemisinin and 320 mg of piperaquine once daily for 3 consecutive days) plus a single treatment course of placebo, or monthly IPTp with dihydroartemisinin-piperaquine plus a single treatment course of azithromycin (two tablets containing 500 mg once daily for 2 consecutive days). Outcome assessors in the delivery units were masked to treatment group. The composite primary endpoint was adverse pregnancy outcome, defined as fetal loss, adverse newborn baby outcomes (small for gestational age, low birthweight, or preterm), or neonatal death. The primary analysis was by modified intention to treat, consisting of all randomised participants with primary endpoint data. Women who received at least one dose of study drug were included in the safety analyses. This trial is registered with ClinicalTrials.gov, NCT03208179. FINDINGS: From March-29, 2018, to July 5, 2019, 4680 women (mean age 25·0 years [SD 6·0]) were enrolled and randomly assigned: 1561 (33%; mean age 24·9 years [SD 6·1]) to the sulfadoxine-pyrimethamine group, 1561 (33%; mean age 25·1 years [6·1]) to the dihydroartemisinin-piperaquine group, and 1558 (33%; mean age 24·9 years [6.0]) to the dihydroartemisinin-piperaquine plus azithromycin group. Compared with 335 (23·3%) of 1435 women in the sulfadoxine-pyrimethamine group, the primary composite endpoint of adverse pregnancy outcomes was reported more frequently in the dihydroartemisinin-piperaquine group (403 [27·9%] of 1442; risk ratio 1·20, 95% CI 1·06-1·36; p=0·0040) and in the dihydroartemisinin-piperaquine plus azithromycin group (396 [27·6%] of 1433; 1·16, 1·03-1·32; p=0·017). The incidence of serious adverse events was similar in mothers (sulfadoxine-pyrimethamine group 17·7 per 100 person-years, dihydroartemisinin-piperaquine group 14·8 per 100 person-years, and dihydroartemisinin-piperaquine plus azithromycin group 16·9 per 100 person-years) and infants (sulfadoxine-pyrimethamine group 49·2 per 100 person-years, dihydroartemisinin-piperaquine group 42·4 per 100 person-years, and dihydroartemisinin-piperaquine plus azithromycin group 47·8 per 100 person-years) across treatment groups. 12 (0·2%) of 6685 sulfadoxine-pyrimethamine, 19 (0·3%) of 7014 dihydroartemisinin-piperaquine, and 23 (0·3%) of 6849 dihydroartemisinin-piperaquine plus azithromycin treatment courses were vomited within 30 min. INTERPRETATION: Monthly IPTp with dihydroartemisinin-piperaquine did not improve pregnancy outcomes, and the addition of a single course of azithromycin did not enhance the effect of monthly IPTp with dihydroartemisinin-piperaquine. Trials that combine sulfadoxine-pyrimethamine and dihydroartemisinin-piperaquine for IPTp should be considered. FUNDING: European & Developing Countries Clinical Trials Partnership 2, supported by the EU, and the UK Joint-Global-Health-Trials-Scheme of the Foreign, Commonwealth and Development Office, Medical Research Council, Department of Health and Social Care, Wellcome, and the Bill-&-Melinda-Gates-Foundation.


Subject(s)
Antimalarials , Pregnancy Complications, Parasitic , Quinolines , Infant, Newborn , Pregnancy , Female , Humans , Adult , Young Adult , Pyrimethamine/adverse effects , Sulfadoxine/adverse effects , Pregnancy Outcome , Antimalarials/adverse effects , Azithromycin/adverse effects , Pregnancy Complications, Parasitic/drug therapy , Pregnancy Complications, Parasitic/prevention & control , Pregnancy Complications, Parasitic/epidemiology , Drug Combinations , Kenya , Tanzania
10.
Lancet ; 399(10331): 1227-1241, 2022 03 26.
Article in English | MEDLINE | ID: mdl-35339225

ABSTRACT

BACKGROUND: Long-lasting insecticidal nets (LLINs) have successfully reduced malaria in sub-Saharan Africa, but their effectiveness is now partly compromised by widespread resistance to insecticides among vectors. We evaluated new classes of LLINs with two active ingredients with differing modes of action against resistant malaria vectors. METHODS: We did a four-arm, cluster-randomised trial in Misungwi, Tanzania. Clusters were villages, or groups of hamlets, with at least 119 households containing children aged 6 months to 14 years living in the cluster's core area. Constrained randomisation was used to allocate clusters (1:1:1:1) to receive one of four types of LLIN treated with the following: α-cypermethrin only (pyrethroid-only [reference] group); pyriproxyfen and α-cypermethrin (pyriproxyfen group); chlorfenapyr and α-cypermethrin (chlorfenapyr group); or the synergist piperonyl butoxide and permethrin (piperonyl butoxide group). At least one LLIN was distributed for every two people. Community members and the field team were masked to group allocation. Malaria prevalence data were collected through cross-sectional surveys of randomly selected households from each cluster, in which children aged 6 months to 14 years were assessed for Plasmodium falciparum malaria infection by rapid diagnostic tests. The primary outcome was malaria infection prevalence at 24 months after LLIN distribution, comparing each of the dual-active-ingredient LLINs to the standard pyrethroid-only LLINs in the intention-to-treat population. The primary economic outcome was cost-effectiveness of dual-active-ingredient LLINs, based on incremental cost per disability-adjusted life-year (DALY) averted compared with pyrethroid-only LLINs, modelled over a 2-year period; we included costs of net procurement and malaria diagnosis and treatment, and estimated DALYs in all age groups. This study is registered with ClinicalTrials.gov (NCT03554616), and is ongoing but no longer recruiting. FINDINGS: 84 clusters comprising 39 307 households were included in the study between May 11 and July 2, 2018. 147 230 LLINs were distributed among households between Jan 26 and Jan 28, 2019. Use of study LLINs was reported in 3155 (72·1%) of 4378 participants surveyed at 3 months post-distribution and decreased to 8694 (40·9%) of 21 246 at 24 months, with varying rates of decline between groups. Malaria infection prevalence at 24 months was 549 (45·8%) of 1199 children in the pyrethroid-only reference group, 472 (37·5%) of 1258 in the pyriproxyfen group (adjusted odds ratio 0·79 [95% CI 0·54-1·17], p=0·2354), 512 (40·7%) of 1259 in the piperonyl butoxide group (0·99 [0·67-1·45], p=0·9607), and 326 [25·6%] of 1272 in the chlorfenapyr group (0·45 [0·30-0·67], p=0·0001). Skin irritation or paraesthesia was the most commonly reported side-effect in all groups. Chlorfenapyr LLINs were the most cost-effective LLINs, costing only US$19 (95% uncertainty interval 1-105) more to public providers or $28 (11-120) more to donors per DALY averted over a 2-year period compared with pyrethroid-only LLINs, and saving costs from societal and household perspectives. INTERPRETATION: After 2 years, chlorfenapyr LLINs provided significantly better protection than pyrethroid-only LLINs against malaria in an area with pyrethroid-resistant mosquitoes, and the additional cost of these nets would be considerably below plausible cost-effectiveness thresholds ($292-393 per DALY averted). Before scale-up of chlorfenapyr LLINs, resistance management strategies are needed to preserve their effectiveness. Poor textile and active ingredient durability in the piperonyl butoxide and pyriproxyfen LLINs might have contributed to their relative lack of effectiveness compared with standard LLINs. FUNDING: Joint Global Health Trials scheme (UK Foreign, Commonwealth and Development Office; UK Medical Research Council; Wellcome; UK Department of Health and Social Care), US Agency for International Development, President's Malaria Initiative.


Subject(s)
Insecticide-Treated Bednets , Insecticides , Malaria , Pyrethrins , Animals , Child , Cost-Benefit Analysis , Cross-Sectional Studies , Humans , Malaria/epidemiology , Malaria/prevention & control , Mosquito Control , Pyrethrins/pharmacology , Tanzania/epidemiology
11.
Malar J ; 21(1): 96, 2022 Mar 19.
Article in English | MEDLINE | ID: mdl-35305667

ABSTRACT

BACKGROUND: Progress achieved by long-lasting insecticidal nets (LLINs) against malaria is threatened by widespread selection of pyrethroid resistance among vector populations. LLINs with non-pyrethroid insecticides are urgently needed. This study aims to assess the insecticide and textile durability of three classes of dual-active ingredient (A.I.) LLINs using techniques derived from established WHO LLIN testing methods to set new standards of evaluation. METHODS: A WHO Phase 3 active ingredients and textile durability study will be carried out within a cluster randomized controlled trial in 40 clusters in Misungwi district, Tanzania. The following treatments will be evaluated: (1) Interceptor®G2 combining chlorfenapyr and the pyrethroid alpha-cypermethrin, (2) Royal Guard® treated with pyriproxyfen and alpha-cypermethrin, (3) Olyset™ Plus which incorporates a synergist piperonyl butoxide and the pyrethroid permethrin, and (4) a reference standard alpha-cypermethrin only LLIN (Interceptor®). 750 nets will be followed in 5 clusters per intervention arm at 6, 12, 24 and 36 months post distribution for survivorship and hole index assessment. A second cohort of 1950 nets per net type will be identified in 10 clusters, of which 30 LLINs will be withdrawn for bio-efficacy and chemical analysis every 6 months up to 36 months and another 30 collected for experimental hut trials every year. Bio-efficacy will be assessed using cone bioassays and tunnel tests against susceptible and resistant laboratory strains of Anopheles gambiae sensu stricto. Efficacy of field-collected nets will be compared in six experimental huts. The main outcomes will be Anopheles mortality up to 72 h post exposure, blood feeding and egg maturation using ovary dissection to assess impact on fecundity. CONCLUSIONS: Study findings will help develop bio-efficacy and physical durability criteria for partner A.I., in relation to the cRCT epidemiological and entomological outcomes, and refine preferred product characteristics of each class of LLIN. If suitable, the bioassay and hut outcomes will be fitted to transmission models to estimate correlation with cRCT outcomes. TRIAL REGISTRATION NUMBER: NCT03554616.


Subject(s)
Insecticide-Treated Bednets , Insecticides , Pyrethrins , Female , Humans , Insecticides/pharmacology , Mosquito Control/methods , Mosquito Vectors , Prospective Studies , Pyrethrins/pharmacology , Tanzania
12.
PLoS One ; 17(1): e0249440, 2022.
Article in English | MEDLINE | ID: mdl-35073324

ABSTRACT

Long lasting insecticidal nets (LLINs) are a proven tool to reduce malaria transmission, but in Africa efficacy is being reduced by pyrethroid resistance in the major vectors. A previous study that was conducted in Muleba district, Tanzania indicated possible involvement of cytochrome P450 monooxygenases in a pyrethroid resistance in An. gambiae population where pre-exposure to piperonyl butoxide (PBO) followed by permethrin exposure in CDC bottle bioassays led to partial restoration of susceptibility. PBO is a synergist that can block pyrethroid-metabolizing enzymes in a mosquito. Insecticide resistance profiles and underlying mechanisms were investigated in Anopheles gambiae and An. funestus from Muleba during a cluster randomized trial. Diagnostic dose bioassays using permethrin, together with intensity assays, suggest pyrethroid resistance that is both strong and very common, but not extreme. Transcriptomic analysis found multiple P450 genes over expressed including CYP6M2, CYP6Z3, CYP6P3, CYP6P4, CYP6AA1 and CYP9K1 in An. gambiae and CYP6N1, CYP6M7, CYP6M1 and CYP6Z1 in An. funestus. Indeed, very similar suites of P450 enzymes commonly associated with resistant populations elsewhere in Africa were detected as over expressed suggesting a convergence of mechanisms across Sub-Saharan African malaria vectors. The findings give insight into factors that may correlate with pyrethroid PBO LLIN success, broadly supporting model predictions, but revision to guidelines previously issued by the World Health Organization is warranted.


Subject(s)
Anopheles/genetics , Cytochrome P-450 Enzyme System/genetics , Insecticide-Treated Bednets/adverse effects , Permethrin/pharmacology , Piperonyl Butoxide/chemistry , Animals , Anopheles/drug effects , Cytochrome P-450 Enzyme System/metabolism , Drug Synergism , Gene Expression Profiling , Gene Expression Regulation, Enzymologic/drug effects , Insect Proteins/genetics , Insect Proteins/metabolism , Insecticide Resistance , Mosquito Control , Tanzania , Up-Regulation/drug effects
13.
PLOS Glob Public Health ; 2(10): e0000453, 2022.
Article in English | MEDLINE | ID: mdl-36962517

ABSTRACT

Two billion pyrethroid long-lasting insecticidal nets (LLINs) have been distributed since 2004 for malaria prevention in Sub-Saharan Africa. Current malaria control strategies rely on an assumed effective 3-year lifespan for LLINs. PBO synergist LLINs are a newly recommended class of net but there is limited information on their life span and long-term protective efficacy in communities. To assess their operational survival, a cohort of 390 PBO LLINs (Olyset Plus) and 367 standard pyrethroid LLIN (Olyset net) from 396 households were followed for 36 months in Western Tanzania. To assess the association between the condition of the LLIN and malaria infection, nets from at least 480 randomly selected households were assessed during malaria prevalence cross-sectional surveys at 4, 9, 16, 21, 28, and 33 months post-distribution. Information on the presence and condition of nets, and demographic information from the household, were collected to evaluate factors influencing net durability. After 3 years less than 17% of nets distributed still remained in the households. The fabric condition was not associated with malaria infection in either type of net. The difference between the net types was highest when nets were between 1-2 years old, when PBO nets appeared to be similarly protective as nets less than a year old, whereas standard nets were considerably less protective as they aged, regardless of fabric condition. There was no statistical difference in the estimated median functional survival time between net types with 1.6 years (95% CI 1.38-1.87) for PBO LLIN and 1.9 years (95% CI 1.67-2.06) for standard LLINs. After 3 years, there was a loss of 55% of permethrin (pyrethroid) content for both nets, and 97% of PBO content was lost in PBO LLIN. These results highlight that functional survival is less than the recommended 3 years for both net types. However, even as the nets age, the PBO nets remained more protective than standard nets, regardless of their condition.

14.
Sci Rep ; 11(1): 13457, 2021 06 29.
Article in English | MEDLINE | ID: mdl-34188090

ABSTRACT

Anopheles funestus is playing an increasing role in malaria transmission in parts of sub-Saharan Africa, where An. gambiae s.s. has been effectively controlled by long-lasting insecticidal nets. We investigated vector population bionomics, insecticide resistance and malaria transmission dynamics in 86 study clusters in North-West Tanzania. An. funestus s.l. represented 94.5% (4740/5016) of all vectors and was responsible for the majority of malaria transmission (96.5%), with a sporozoite rate of 3.4% and average monthly entomological inoculation rate (EIR) of 4.57 per house. Micro-geographical heterogeneity in species composition, abundance and transmission was observed across the study district in relation to key ecological differences between northern and southern clusters, with significantly higher densities, proportions and EIR of An. funestus s.l. collected from the South. An. gambiae s.l. (5.5%) density, principally An. arabiensis (81.1%) and An. gambiae s.s. (18.9%), was much lower and closely correlated with seasonal rainfall. Both An. funestus s.l. and An. gambiae s.l. were similarly resistant to alpha-cypermethrin and permethrin. Overexpression of CYP9K1, CYP6P3, CYP6P4 and CYP6M2 and high L1014S-kdr mutation frequency were detected in An. gambiae s.s. populations. Study findings highlight the urgent need for novel vector control tools to tackle persistent malaria transmission in the Lake Region of Tanzania.


Subject(s)
Anopheles , Insecticide Resistance/ethnology , Malaria/transmission , Mosquito Control , Mosquito Vectors , Pyrethrins/pharmacology , Animals , Anopheles/genetics , Anopheles/parasitology , Insect Proteins/genetics , Insecticide Resistance/drug effects , Lakes , Malaria/epidemiology , Mosquito Vectors/genetics , Mosquito Vectors/parasitology , Mutation/genetics , Tanzania
15.
BMJ Open ; 11(3): e046664, 2021 03 08.
Article in English | MEDLINE | ID: mdl-34006037

ABSTRACT

INTRODUCTION: The massive scale-up of long-lasting insecticidal nets (LLINs) has led to major reductions in malaria burden in many sub-Saharan African countries. This progress is threatened by widespread insecticide resistance among malaria vectors. This cluster-randomised controlled trial (c-RCT) compares three of the most promising dual active ingredients LLINs (dual-AI LLINs), which incorporate mixtures of insecticides or insecticide synergists to standard LLINs in an area of pyrethroid insecticide resistance. METHODS: A four-arm, single-blinded, c-RCT will evaluate the effectiveness of three types of dual-AI LLINs (1) Royal Guard, combining two insecticides, pyriproxyfen and the pyrethroid alpha-cypermethrin; (2) Interceptor G2, combining chlorfenapyr and alpha-cypermethrin; (3) Olyset Plus, an LLIN combining a synergist, piperonyl butoxide and the pyrethroid permethrin, compared with; (4) Interceptor LN, a standard LLIN containing the pyrethroid alpha-cypermethrin as the sole AI. The primary outcomes are malaria infection prevalence in children aged 6 months-14 years and entomological inoculation rate (EIR), as a standard measure of malaria transmission at 24 months postintervention and cost-effectiveness. ETHICS AND DISSEMINATION: Ethical approval was received from the institutional review boards of the Tanzanian National Institute for Medical Research, Kilimanjaro Christian Medical University College, London School of Hygiene and Tropical Medicine, and University of Ottawa. Study findings will be actively disseminated via reports and presentations to stakeholders, local community leaders, and relevant national and international policy makers as well as through conferences, and peer-reviewed publications. TRIAL REGISTRATION NUMBER: NCT03554616.


Subject(s)
Culicidae , Insecticide-Treated Bednets , Malaria , Pyrethrins , Animals , Child , Humans , Insecticide Resistance , London , Malaria/prevention & control , Mosquito Vectors , Randomized Controlled Trials as Topic , Single-Blind Method , Tanzania
16.
Parasit Vectors ; 14(1): 150, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33691742

ABSTRACT

BACKGROUND: The spread of pyrethroid resistance in malaria vectors threatens the effectiveness of standard long-lasting insecticidal nets (LLIN). Synergist nets combine pyrethroid (Py) and piperonyl-butoxide (PBO) to enhance potency against resistance mediated by mono-oxygenase mechanisms. Our project assessed personal protection of the World Health Organization first-in-class PBO-Py LLIN (Olyset Plus) versus the standard LLIN (Olyset net) against pyrethroid-resistant Anopheles gambiae sensu lato (s.l.) and An. funestus in North-West Tanzania after 20 months of household use. METHODS: From a household survey, 39 standard Olyset net and 39 Olyset Plus houses were selected. The physical integrity and hole index (HI) of the nets were assessed, and resting mosquitoes were collected from inside nets and from room walls. The indoor abundance was estimated using CDC light traps and species identified using PCR. The bioefficacy of PBO and standard LLINs against wild Anopheles was assessed using 30-minute cylinder bioassays. RESULTS: Of 2397 Anopheles collected, 8.9% (n = 213) were resting inside standard Olyset nets, while none were found inside Olyset Plus nets (PBO-Py LLINs) of any HI category. Resting density of blood-fed mosquitoes was higher on walls of sleeping rooms with Olyset nets compared to Olyset Plus (0.62 vs 0.10, density ratio [DR]: 0.03, 95% CI 0.01-0.13, p < 0.001). Mosquitoes were found inside Olyset nets of all WHO HI categories, but more were collected inside the more damaged nets (HI ≥ 643) than in less damaged (HI 0-64) nets (DR: 6.4, 95% CI 1.1-36.0, p = 0.037). In bioassay, mortality of An. gambiae s.l. was higher with Olyset Plus than with Olyset nets for new nets (76.8% vs 27.5%) and nets used for 20 months (56.8% vs 12.8%); similar trends were observed with An. funestus. CONCLUSION: The PBO-Py LLINs provided improved protection after 20 months of household use, as demonstrated by the higher bioassay mortality and absence of pyrethroid-resistant An. gambiae sensu stricto (s.s.) and An. funestus collected from inside Olyset Plus nets, irrespective of HI category, as compared to Olyset nets.


Subject(s)
Anopheles/drug effects , Insecticide Resistance , Insecticide-Treated Bednets/statistics & numerical data , Insecticide-Treated Bednets/standards , Insecticides/pharmacology , Mosquito Control/statistics & numerical data , Pyrethrins/pharmacology , Animals , Family Characteristics , Malaria/prevention & control , Malaria/transmission , Mosquito Control/methods , Mosquito Vectors/drug effects , Mosquito Vectors/parasitology , Pesticide Synergists/pharmacology , Tanzania
17.
Malar J ; 19(1): 297, 2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32819368

ABSTRACT

BACKGROUND: Long-lasting insecticidal nets (LLINs) are the most widely deployed vector control intervention in sub-Saharan Africa to prevent malaria. Recent reports indicate selection of pyrethroid insecticide resistance is widespread in mosquito vectors. This paper explores risk factors associated with malaria infection prevalence and vector density between mass distribution campaigns, changes in net coverage, and loss of protection in an area of high pyrethroid resistance in Northwest Tanzania. METHODS: A cross sectional malaria survey of 3456 children was undertaken in 2014 in Muleba district, Kagera region west of Lake Victoria. Vector density was assessed using indoor light traps and outdoor tent traps. Anophelines were identified to species using PCR and tested for Plasmodium falciparum circumsporozoite protein. Logistic regression was used to identify household and environmental factors associated with malaria infection and regression binomial negative for vector density. RESULTS: LLIN use was 27.7%. Only 16.9% of households had sufficient nets to cover all sleeping places. Malaria infection was independently associated with access to LLINs (OR: 0.57; 95% CI 0.34-0.98). LLINs less than 2 years old were slightly more protective than older LLINs (53 vs 65% prevalence of infection); however, there was no evidence that LLINs in good condition (hole index < 65) were more protective than LLINs, which were more holed. Other risk factors for malaria infection were age, group, altitude and house construction quality. Independent risk factors for vector density were consistent with malaria outcomes and included altitude, wind, livestock, house quality, open eaves and LLIN usage. Indoor collections comprised 4.6% Anopheles funestus and 95.4% Anopheles gambiae of which 4.5% were Anopheles arabiensis and 93.5% were Anopheles gambiae sensu stricto. CONCLUSION: Three years after the mass distribution campaign and despite top-ups, LLIN usage had declined considerably. While children living in households with access to LLINs were at lower risk of malaria, infection prevalence remained high even among users of LLINs in good condition. While effort should be made to maintain high coverage between campaigns, distribution of standard pyrethroid-only LLINs appears insufficient to prevent malaria transmission in this area of intense pyrethroid resistance.


Subject(s)
Anopheles/physiology , Insecticide-Treated Bednets/statistics & numerical data , Malaria, Falciparum/epidemiology , Mosquito Control , Mosquito Vectors/physiology , Adolescent , Animals , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Infant , Infant, Newborn , Malaria, Falciparum/parasitology , Male , Plasmodium falciparum/drug effects , Population Density , Prevalence , Risk Factors , Tanzania/epidemiology
18.
Lancet Infect Dis ; 20(8): 953-963, 2020 08.
Article in English | MEDLINE | ID: mdl-32277908

ABSTRACT

BACKGROUND: Passively collected malaria case data are the foundation for public health decision making. However, because of population-level immunity, infections might not always be sufficiently symptomatic to prompt individuals to seek care. Understanding the proportion of all Plasmodium spp infections expected to be detected by the health system becomes particularly paramount in elimination settings. The aim of this study was to determine the association between the proportion of infections detected and transmission intensity for Plasmodium falciparum and Plasmodium vivax in several global endemic settings. METHODS: The proportion of infections detected in routine malaria data, P(Detect), was derived from paired household cross-sectional survey and routinely collected malaria data within health facilities. P(Detect) was estimated using a Bayesian model in 431 clusters spanning the Americas, Africa, and Asia. The association between P(Detect) and malaria prevalence was assessed using log-linear regression models. Changes in P(Detect) over time were evaluated using data from 13 timepoints over 2 years from The Gambia. FINDINGS: The median estimated P(Detect) across all clusters was 12·5% (IQR 5·3-25·0) for P falciparum and 10·1% (5·0-18·3) for P vivax and decreased as the estimated log-PCR community prevalence increased (adjusted odds ratio [OR] for P falciparum 0·63, 95% CI 0·57-0·69; adjusted OR for P vivax 0·52, 0·47-0·57). Factors associated with increasing P(Detect) included smaller catchment population size, high transmission season, improved care-seeking behaviour by infected individuals, and recent increases (within the previous year) in transmission intensity. INTERPRETATION: The proportion of all infections detected within health systems increases once transmission intensity is sufficiently low. The likely explanation for P falciparum is that reduced exposure to infection leads to lower levels of protective immunity in the population, increasing the likelihood that infected individuals will become symptomatic and seek care. These factors might also be true for P vivax but a better understanding of the transmission biology is needed to attribute likely reasons for the observed trend. In low transmission and pre-elimination settings, enhancing access to care and improvements in care-seeking behaviour of infected individuals will lead to an increased proportion of infections detected in the community and might contribute to accelerating the interruption of transmission. FUNDING: Wellcome Trust.


Subject(s)
Asymptomatic Infections/epidemiology , Disease Reservoirs/statistics & numerical data , Malaria, Falciparum/epidemiology , Malaria, Vivax/epidemiology , Adolescent , Adult , Africa/epidemiology , Aged , Aged, 80 and over , Americas/epidemiology , Asia/epidemiology , Bayes Theorem , Child , Child, Preschool , Cluster Analysis , Cross-Sectional Studies , Disease Reservoirs/parasitology , Female , Health Facilities/statistics & numerical data , Humans , Infant , Longitudinal Studies , Malaria, Falciparum/transmission , Malaria, Vivax/transmission , Male , Middle Aged , Prevalence , Public Health Surveillance/methods , Seasons , Young Adult
20.
Nat Commun ; 10(1): 1433, 2019 03 29.
Article in English | MEDLINE | ID: mdl-30926893

ABSTRACT

Malaria infections occurring below the limit of detection of standard diagnostics are common in all endemic settings. However, key questions remain surrounding their contribution to sustaining transmission and whether they need to be detected and targeted to achieve malaria elimination. In this study we analyse a range of malaria datasets to quantify the density, detectability, course of infection and infectiousness of subpatent infections. Asymptomatically infected individuals have lower parasite densities on average in low transmission settings compared to individuals in higher transmission settings. In cohort studies, subpatent infections are found to be predictive of future periods of patent infection and in membrane feeding studies, individuals infected with subpatent asexual parasite densities are found to be approximately a third as infectious to mosquitoes as individuals with patent (asexual parasite) infection. These results indicate that subpatent infections contribute to the infectious reservoir, may be long lasting, and require more sensitive diagnostics to detect them in lower transmission settings.


Subject(s)
Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Parasites/physiology , Plasmodium falciparum/physiology , Animals , Germ Cells/metabolism , Humans , Parasitemia/parasitology , Probability , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...